Concatenative topics
Concatenative meta
Other languages
Meta
The Sierpinski triangle of order 4 should look like this:
                       *
                      * *
                     *   *
                    * * * *
                   *       *
                  * *     * *
                 *   *   *   *
                * * * * * * * *
               *               *
              * *             * *
             *   *           *   *
            * * * *         * * * *
           *       *       *       *
          * *     * *     * *     * *
         *   *   *   *   *   *   *   *
        * * * * * * * * * * * * * * * *
@sierpinski ( -> )
	( mask ) [ LIT2r 0a18 ] [ LIT2r 2018 ] 
	( size ) [ LIT2 &size 1001 ] SUB
	&>ver ( -- )
		DUP INCk
		&>pad ( length -- )
			DEOkr
			#01 SUB DUP ?&>pad
		&>fill ( length i -- )
			ANDk DUP2r ?{ POP2r ORA2kr } DEOr DEOkr
			INC ADDk ,&size LDR LTH ?&>fill
		POP2 OVR2r DEOr
		#01 SUB INCk ?&>ver
	POP POP2r POP2r BRK
:N 16;
N [ dup                         (y) 
    [' .c] dotimes              (print padding)
    N [ dup                     (x)
        over2 drop 1-           (y' = y - 1)
        swap N !-               (x' = N - x)
        &                       (x' & y')
        \'  \'* ifte .c ' .c ]  (print * or space)
    dotimes .nl]       
dotimes: plot ( i j -- )
    bitand zero? "* " "  " ? write ;
: pad ( n -- ) 
    1 - [ bl ] times ;
: plot-row ( n -- ) 
    dup 1 + [ tuck - plot ] with each-integer ;
: sierpinski ( n -- )
    dup '[ _ over - pad plot-row nl ] each-integer ;vocab each_int:
    define helper<+P> (Int32, Int32, (Int32 -> +P) -> +P):
        -> n, i, f ;
        if (i < n):
            i f call
            n (i + 1) f helper
    
define each_int<+P> (Int32, (Int32 -> +P) -> +P):
    zero swap each_int::helper
define with_arg<R1..., R2..., T, A, B, S..., +P2, +P1>(R1..., T, B, (R2..., T, A -> S... +P2) -> R1..., B, (R2..., A -> S... +P1) +P1):
    {swap} dip {{swap} dip call} apply apply
define plot (Int32, Int32 -> +IO):
    (&) zero (=) if {"* "} else {"  "} print
define over<A, B> (A, B -> A, B, A):
    -> a, b; a b a
define tuck<A, B> (A, B -> B, A, B):
    swap over
define times<+P> (Int32, (-> +P) -> +P):
    {drop} swap compose each_int
define pad (Int32 -> +IO):
    1 (-) {" " print} times 
define plot_row (Int32 -> +IO):
    dup 1 (+) {tuck (-) plot} with_arg each_int
define sierpinski (Int32 -> +IO):
    dup {over (-) pad plot_row "\n" print} apply each_int
16 sierpinski: star ( -- )       [char] * emit space ;
: plot ( i j -- )   and 0= if star else 2 spaces then ;
: padd ( n -- )     0 +do space loop ;
: 2^   ( n -- 2^n ) dup 0= if 1 else 1- 2 swap lshift then ;
: sierpinski ( o -- )
  2^ dup 1- -1 swap -do
    i padd dup 0 +do
      i j plot
    loop cr
  1 -loop ;
4 sierpinski# can be made better by someone with more uiua experience S ← ↻1=0⊞(/+⬚0×)∩⋯:⟜:⊙-.⇡.ⁿ:2 P ← ∵(□↯:@ )⇌:≡(□♭⊏:[" " " □"]↙)+1⇡⧻.
include "cores/rm86.cal" include "std/io.cal" func sierpinski begin let cell n let cell x let cell y let cell pad n ! 0 y ! n @ pad ! while y @ n @ < do 0 x ! while x @ pad @ < do ' ' printch x @ 1 + x ! end 0 x ! while x @ n @ < do if x @ n @ y @ 1 + - and then ' ' printch else '*' printch end ' ' printch x @ 1 + x ! end y @ 1 + y ! pad @ 1 - pad ! 13 printch 10 printch end end 16 sierpinski
Modal is a string re-writing language. The rules have been written to emulate other post-fix concatenative languages.
<> (?: print) (?:) <> (?* explode) ((List (?*))) <> ((List ?*) implode) (?*) <> (MkEmpty) (_________________________________ explode) <> ((List (?1 (?2 ?l))) MkWindow) ((Window (?1 ?2) ?l)) <> ((Window (?1 ?2) ( )) roll) ((WindowExhausted)) <> ((Window (?1 ?2) (?3 )) roll) ((Window (?1 ?2 ?3) ())) <> ((Window (?1 ?2) (?3 ?l)) roll) ((Window (?1 ?2 ?3) ?l)) <> ((Window (?1 ?2 ?3) ( )) roll) ((Window (?2 ?3 ) ())) <> ((Window (?1 ?2 ?3) (?4 )) roll) ((Window (?2 ?3 ?4) ())) <> ((Window (?1 ?2 ?3) (?4 ?l)) roll) ((Window (?2 ?3 ?4) ?l)) <> (?p apply-rule) ((Rule (?p explode MkWindow MkEmpty apply-rule)) implode) <> ((Window (?1 ?2 ?3) ()) (List (?h ?t)) apply-rule) ((?1 ?2 ?3) cell-state ((?2 ?3) cell-state (Rule'))) <> ((Window ?v ?l) (List (?h ?t)) apply-rule) ( ?v cell-state ((Window ?v ?l) roll (List ?t) apply-rule)) <> (Rule (Rule' ?l)) (List ?l) <> (?y (Rule' )) (Rule' (?y)) <> (?x (Rule' ?y)) (Rule' (?x ?y)) <> ((* * *) cell-state) (_) <> ((* * _) cell-state) (*) <> ((* _ *) cell-state) (_) <> ((* _ _) cell-state) (*) <> ((_ * *) cell-state) (*) <> ((_ * _) cell-state) (_) <> ((_ _ *) cell-state) (*) <> ((_ _ _) cell-state) (_) <> ((* _) cell-state) (*) <> ((_ *) cell-state) (*) <> ((_ _) cell-state) (_) <> ((Gas ?f) ?p (?r) MkTriangle) ((Triangle ((Gas ?f) ?p (?r) build))) <> ((Gas (?g ?f)) ?p (?r) build) (?p ((Gas ?f) ?p ?r (?r) build)) <> ((Gas (Empty)) ?p ?r build) (?p (Triangle')) <> (Triangle (Triangle' ?l)) (List (\n ?l)) <> (?y (Triangle' )) (Triangle' (?y (\n (\n)))) <> (?x (Triangle' ?y)) (Triangle' (?x (\n ?y))) (Gas (* (* (* (* (* (* (* (* (* (* (* (* (* (* (* (Empty))))))))))))))))) ________________*________________ (apply-rule) MkTriangle implode print
This revision created on Fri, 12 Apr 2024 22:20:50 by CapitalEx (Add Modal)